In this vignette, you will learn how to generate random numbers in {anvil}. If you’re familiar with R’s built-in random number generation, you’ll notice that {anvil} handles things a bit differently.
The RNG State
In base R, random number generation uses a global state
(.Random.seed) that is automatically updated after each
call:
set.seed(42)
.Random.seed[2:4]
#> [1] 624 507561766 1260545903
rnorm(3)
#> [1] 1.3709584 -0.5646982 0.3631284
.Random.seed[2:4]
#> [1] 6 -1577024373 1699409082
rnorm(3)
#> [1] 0.6328626 0.4042683 -0.1061245
.Random.seed[2:4]
#> [1] 12 -1577024373 1699409082In {anvil}, we take a different approach: the random number generator state must be explicitly passed around. This is because {anvil} follows a functional programming paradigm where functions are pure and don’t have side effects.
Note: This explicit state-passing behavior might change in the future to provide a more R-like experience, but for now you need to manage the state yourself.
Creating an Initial State
To generate random numbers, you first need to create an initial RNG
state, which is simply a ui64[2]. For convenience, you can
convert an R seed into a state using nv_rng_state():
library(anvil)
state <- nv_rng_state(seed = 42L)
state
#> AnvilTensor
#> 42
#> 0
#> [ CPUui64{2} ]Generating Random Numbers
The main functions for generating random numbers are
nv_runif(), nv_rdunif(),
nv_rbinom(), and nv_rnorm(). Both functions
return a list with two elements:
- The new RNG state (to be used for subsequent random number generation)
- The generated random numbers
Let’s generate some uniform random numbers:
f <- jit(function(state) {
nv_runif(state, dtype = "f32", shape = c(2, 3))
})
result <- f(state)
result[[1]] # new state
#> AnvilTensor
#> 42
#> 3
#> [ CPUui64{2} ]
result[[2]] # random numbers
#> AnvilTensor
#> 0.8690 0.1506 0.5203
#> 0.3103 0.9928 0.1065
#> [ CPUf32{2x3} ]For normally distributed random numbers:
What Happens When You Reuse the State?
Here’s the key insight: if you use the same state twice, you get the same random numbers.
h <- jit(function(state) {
result1 <- nv_runif(state, dtype = "f32", shape = 3L)
result2 <- nv_runif(state, dtype = "f32", shape = 3L)
list(first = result1[[2]], second = result2[[2]])
})
output <- h(state)
as_array(output$first)
#> [1] 0.8690484 0.3102535 0.1506324
as_array(output$second)
#> [1] 0.8690484 0.3102535 0.1506324As you can see, both calls produced identical random numbers because we used the same state for both.
Properly Chaining Random Number Generation
To get different random numbers in subsequent calls, you need to pass the new state returned by the previous call:
proper_rng <- jit(function(state) {
result1 <- nv_runif(state, dtype = "f32", shape = c(3))
new_state <- result1[[1]]
result2 <- nv_runif(new_state, dtype = "f32", shape = c(3))
list(first = result1[[2]], second = result2[[2]])
})
output <- proper_rng(state)
as_array(output$first)
#> [1] 0.8690484 0.3102535 0.1506324
as_array(output$second)
#> [1] 0.5203207 0.1064724 0.2499373Now we get different random numbers because we properly propagated the state.